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Figure 1. From Eyquem et al. Nature 2017. Primary TRAC-CAR T cells outperform conventional CAR-T cells. A. CRISPR/Cas9-targeted CAR gene integration into 
the TRAC locus. Top, TRAC locus; middle, rAAV6 contain the CAR cassette flanked by homology arms; bottom, edited TRAC locus. B. Representative TCR/CAR 
flow plots 4 days after TRAC targeting. C. Kaplan-Meier analysis of survival of mice treated with NALM-6 tumor.
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ABSTRACT INTRODUCTION
Genetically engineered T cells are at the vanguard of an emerging wave of scientific

breakthrough focused on harnessing the power of the immune system to treat cancer

and other immune disorders. Perhaps the most dramatic clinical outcome to date has

been demonstrated in clinical trials evaluating autologous chimeric antigen receptor

(CAR) therapy for the treatment of refractory B cell ALL where complete responses in

the majority of the patients have been reported. While adoptive CAR-T cell

treatments hold great promise, pressing challenges remain to ensure multi-parameter

genetically engineered T-cell immunotherapies can be successfully derived, cost-

effectively and consistently manufactured, and safely and reliably delivered at the

scale necessary to support wide patient base commercialization.

Human induced pluripotent stem cell (hiPSC)-derived T cells uniquely represent a

practical and renewable supply of well-defined engineered CAR-T cells for various

therapeutic applications. We have previously described a novel platform to facilitate

multi-gene locus-specific engineering of hiPSCs at the single cell level to establish

highly characterized master cell banks which can then be repeatedly applied to our

stage-specific lymphocyte directed differentiation process to reproducibly and reliably

generate engineered cytotoxic T cells.

Here we present the first set of pre-clinical data for FT819, a first-of-kind off-the-shelf

hiPSC-derived CAR-T cell product. To generate FT819, we successfully combined

reprogramming of peripheral blood derived T cells with targeted insertion of a CD19

CAR into the T cell receptor a (TRAC) locus under the transcriptional control of its

endogenous regulatory elements to generate a single cell-derived clonal TRAC-

targeted CAR expressing master hiPSC line. The clone was characterized to be

pluripotent (>95% SSEA4 / TRA181) and consisted of bi-allelic disruption of TRAC

locus. During the stage-specific differentiation, the hiPSC line faithfully converted into

CD34 positive cells which were then differentiated towards CD8 positive cells with

uniform CAR expression (95 +/- 5%) in the absence of TCR expression, eliminating the

likelihood of GvHD. In vitro functional studies demonstrated that FT819 elicits an

efficient cytotoxic T lymphocyte response to CD19 antigen challenge with production

of effector cytokines (IFNg, TNFa, IL2), degranulation (CD107a/b, Perforin, Granzyme

B), proliferation (>85% entry into cell cycle) and upregulation of activation markers

CD69 and CD25. Importantly, FT819 targets tumor in an antigen specific manner as

demonstrated by lysis of CD19+, but not CD19-, Raji and Nalm6 tumor cell lines. In

summary, FT819 holds the promise of a safe and efficacious off-the-shelf cytotoxic

CAR-T cell product derived in a renewable and highly reproducible process analogous

to biopharmaceutical drug products.
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Why use human iPSC as a source for off-the-shelf CAR-T cell therapeutics?
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FT819: first-of-kind off-the-shelf human iPSC-derived CAR-T cells 
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Concurrent genetic engineering and reprogramming to generate TRAC-CAR TiPSC 
bank
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A.
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Figure 2. Concurrent engineering and reprogramming of TRAC-targeted T cells. A. Schematic of the engineering process. B. Flow cytometric analysis of 
TCR/CAR expression on peripheral blood derived T cells 3 days after TRAC-targeting. C/D. Confirmation of TRAC locus gene editing by PCR (B) and sequencing 
(C). Top row: TRAC sequence in normal T cells – red indicates sequence targeted by guide RNA. Second row: TRAC sequence in TiPSC (WT control made 
alongside the TRAC-CAR T-iPSC), showing normal TRAC sequence. Third row: sequence of TRAC-CAR T-iPSC showing disruption of the TRAC locus and insertion 
of the CAR transgene (sequencing detects the 3’ BGH polyA-sequence at the end of the CAR sequence). Bottom row: TRAC-CAR AAV sequence, AAV sequence 
used to introduce the CAR sequence into the TRAC locus. E. Phenotypic analysis for pluripotency and T cell marker expression in TRAC-CAR TiPSC. F. Gene 
editing of the TRAC locus does not alter the growth rate of TRAC-CAR TiPSC
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Figure 3. Generation of functional CAR-T lymphocytes from TRAC-CAR TiPSC. A. Schematic of iPSC-derived T cell (iT) differentiation protocol. B. D28 TRAC-CAR 
iT cells were assessed for the expression of T cell maturation markers by flow cytometry. C. D28 TRAC-CAR iT cells were assessed for their functional capacity to 
respond to CD19 antigen by upregulation of the T cell activation markers CD25 and CD69 after 24hrs of coculture with NALM-6 tumor targets. D/E. In vitro 
cytotoxicity using a 18hr flow cytometry assay using wildtype (CD19+/+) or knockout (CD19-/-) NALM-6 as target cells. 3 independent experiments on 3 
separate primary CAR-T cells. N=3 independent experiments on 3 separate TRAC-CAR iT batches. F. In vitro cytotoxicity using a 18hr flow cytometry assay using 
wildtype (CD19+/+) or knockout (CD19-/-) Raji as target cells at a 1:1 T:E ratio.  G. D28 TRAC-CAR iT cells were assessed for chemotaxis in response to the 
indicated thymus-derived chemokines in a transwell migration assay. Developing T cells lose migratory capacity to thymus-derived chemokines during 
maturation. H. D28 TRAC-CAR iT cells were assessed for the generation of the proinflammatory cytokines IFNg and TNFa, the pro-survival cytokine IL-2 and the 
cytolytic molecule Granzyme B in response to PMA/ionomycin stimulation for 4 hours. 
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Figure 4. Expansion and maturation of TRAC-CAR iT cells. A. Schematic of 7 day expansion protocol using coculture with irradiated CD19+ feeder cells. B. 
D35 TRAC-CAR iT cells were assessed for T cell maturation markers by flow cytometry. C. Cellular expansion of TRAC-CAR iT cells during the 35 day 
differentiation process. One production run results in >40, 000 fold increase in cellular yield from starting TRAC-CAR TiPSC. D. In vitro cytotoxicity using a 
18hr flow cytometry assay using wildtype (CD19+/+) or knockout (CD19-/-) NALM-6 as target cells. E. D35 TRAC-CAR iT cells were assessed for the generation 
of the proinflammatory cytokines IFNg and TNFa, the pro-survival cytokine IL-2 and the cytolytic molecule Granzyme B in response to PMA/ionomycin 
stimulation for 4 hours. 
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