# **ProTmune<sup>™</sup>**, the Next-Generation Graft for Allogeneic Hematopoietic Cell Transplantation: Phase 1 Safety and Efficacy Data

Richard T. Maziarz, MD<sup>1</sup>, John Edwards, MD<sup>2</sup>, James Essell, MD<sup>3</sup>, Cesar Freytes, MD<sup>4</sup>, Chatchada Karanes, MD<sup>5</sup>, Ayman Saad, Ayman S <sup>1</sup>Knight Cancer Institute, Oregon Health, Ohio; <sup>4</sup>Texas Transplantation, City of Hope National Medical Center, Duarte, CA; <sup>6</sup>University, Portland, OR; <sup>2</sup>Indiana Blood and Marrow Transplantation, IN; <sup>3</sup>Jewish Hospital Mercy Health, Ohio; <sup>4</sup>Texas Transplantation, City of Hope National Medical Center, Duarte, CA; <sup>6</sup>University, Portland, OR; <sup>2</sup>Indiana Blood and Marrow Transplantation, IN; <sup>3</sup>Jewish Hospital Mercy Health, Ohio; <sup>4</sup>Texas Transplantation, City of Hope National Medical Center, Duarte, CA; <sup>6</sup>University, Portland, OR; <sup>2</sup>Indiana Blood and Marrow Transplantation, City of Hope National Medical Center, Duarte, CA; <sup>6</sup>University, Portland, OR; <sup>2</sup>Indiana Blood and Marrow Transplantation, City of Hope National Medical Center, Duarte, CA; <sup>6</sup>University, Portland, OR; <sup>2</sup>Indiana Blood and Marrow Transplantation, City of Hope National Medical Center, Duarte, CA; <sup>6</sup>University, Portland, OR; <sup>2</sup>Indiana Blood and Hematology and Hem of California, San Diego, San Diego, CA; <sup>8</sup>Fate Therapeutics, Inc., San Diego, CA; <sup>9</sup>Department of Oncology, Blood and Marrow Stem Cell Transplant Program, Karmanos Cancer Institute/Wayne State University, Detroit, MI

# BACKGROUND

Therapeutic solutions that advance the curative potential of allogeneic hematopoietic cell transplantation (HCT) for patients with hematologic malignancies must reduce the potential of donor T cells to cause GvHD and maintain the capacity of donor T cells to prevent cancer relapse.

**ProTmune<sup>™</sup>** is a next-generation hematopoietic cell graft for patients with hematologic malignancies undergoing matched unrelated donor allogeneic HCT. ProTmune is being clinically investigated for reduction in the incidence and severity of acute graft vs. host disease (GvHD) and maintenance of graft-versusleukemia (GvL) activity.

### **PROTECT Phase 1/2 Clinical Trial**

PROTECT is a Phase 1, non-randomized, open-label / Phase 2 randomized, double blinded study of ProTmune versus a conventional matched unrelated donor mobilized peripheral blood (mPB) cell graft (NCT02743351).

#### **Key Inclusion Criteria**

- 18 to 70 years old
- AML, ALL, MDS and CML
- Molecular Matched Unrelated Donor mPB HCT
- 8/8 HLA-A, -B, -C, and -DRB1
- Myeloablative Conditioning Regimen
- CyTBI, BuCy, FluBu, TBI/VP or FluMel 140
- GvHD Prophylaxis Regimen
  - Methotrexate (15-10-10 mg/m<sup>2</sup>), Tacrolimus
- mPB Unit Requirement (pre-manufacture)
  - Phase 1:  $\geq$  5 × 10<sup>6</sup> CD34+ cells/kg (included a reserve dose of  $2 \times 10^6$  CD34+ cells/kg)
  - Phase  $2: \ge 3 \times 10^6$  CD34+ cells/kg (no reserve dose)

#### PROTECT Phase 1 Stage

- Open label, single arm study
- 1° Endpoint: Day 28 safety assessment for neutrophil engraftment and survival

#### **PROTECT Phase 2 Stage**

- Double-blinded, randomized, controlled study
- 1° Endpoint: Day 100 efficacy assessment for cumulative incidence of acute GvHD (Grade 2-4)
- Opened to enrollment September 2017

# **ACUTE GVHD**

- Acute GvHD is a severe immunological disease that commonly arises in patients during the first weeks following allogeneic HCT when adoptively transferred donor immune cells attack the patient's tissues and organs, resulting in a potentially fatal immune system reaction
- Up to 60% of patients undergoing unrelated mPB transplant experience acute GvHD (Grade 2-4) (Jagasia et al, *Blood*, 2011)
- Acute GvHD is the leading cause of early morbidity and mortality in matched unrelated donor HCT, where death directly attributable to acute GvHD or its treatment occurs in 10% to 20% of patients
- Investigational methods to address acute GvHD, including the use of T-cell depleted grafts, have resulted in high rates of cancer relapse and mortality (Soiffer et al, JCO, 2017)
- There are currently no FDA-approved preventive therapies and very few treatment options for acute GvHD

ProTmune is a next-generation hematopoietic cell graft designed to reduce acute GvHD while maintaining graft-versus-leukemia (GvL) activity. ProTmune has been granted Orphan Drug and Fast Track Designations by the U.S. FDA and Orphan Medicinal Product Designation by the EMA.



**Figure 1.** ProTmune is manufactured by pharmacologically modulating a mobilized peripheral blood graft ex vivo with two small molecules to transiently attenuate the alloreactivity of donor T cells while maintaining long term immunological GvL activity.

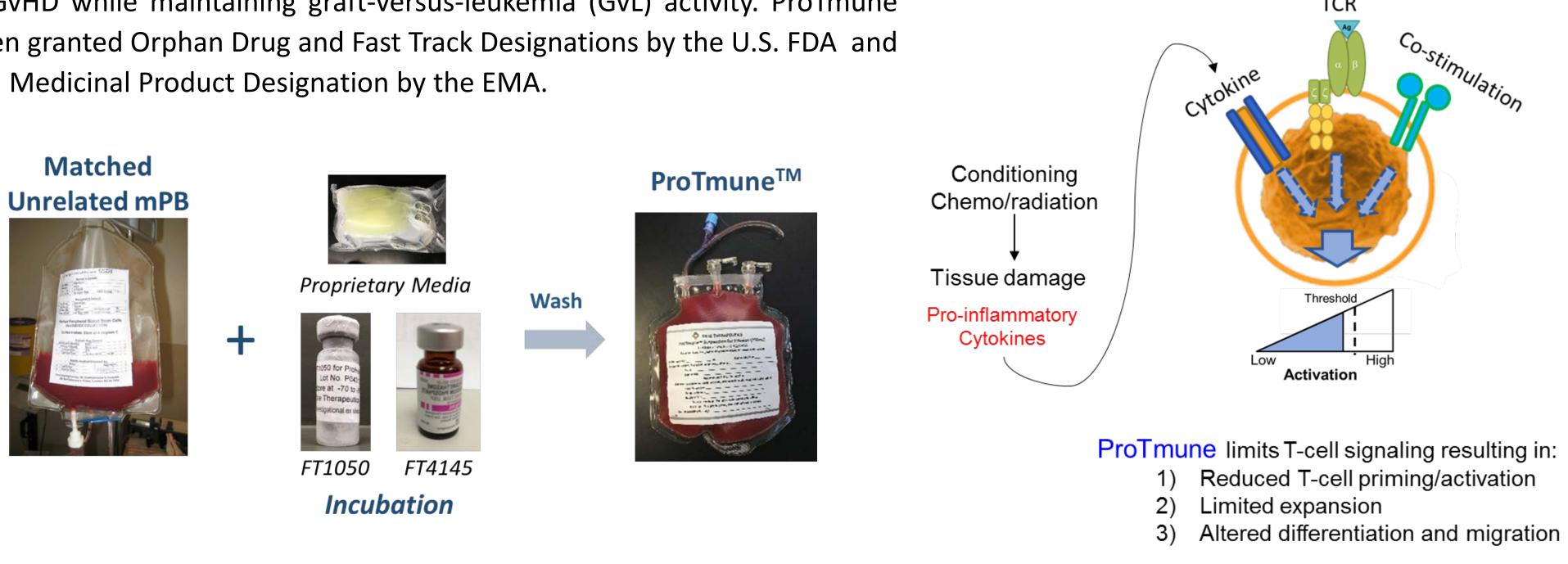
# **ProTmune Manufacturing**

CD34+ Dos CD34+ Re

CD3+ Dose

CD3+ Rec

**TNC** Viabili


|              | <sup>2500</sup> |
|--------------|-----------------|
| _ s          | 2000 -          |
| t (MFI       | 1500-           |
| XCR4<br>CD34 | 1000-           |
| ΰu           | 500-            |
|              | 0               |

Successful the pharma

- There have been no events of graft failure
- All subjects remain leukemia-free
- Median time on study is 154 days [range 106-254]; 5 of 7 subjects remain on study • Non-relapse mortality was reported in two subjects:
- - Subject 1 on Day 228 from pulmonary edema
  - Subject 3 on Day 151 from atrial fibrillation
- No ProTmune-related SAEs have been reported by investigators
- Transplant-related SAEs include the following: Acute cholecystitis; atrial fibrillation; acute kidney injury; CMV colitis; enterococcal infection; failure to thrive; GvHD; lower GI hemorrhage; PRES-post reversible encephalopathy syndrome; pulmonary edema; and steroid myopathy

# **PRODUCT DESCRIPTION**

#### Attenuates Pathogenic T-cell Priming



**Figure 2.** ProTmune attenuates pathogenic T-cell priming, activation and expansion, leading to reduced GvHD while maintaining GvL.

| Parameter                                                                                           | Mean (range)                                         |         |         | Age /  | MAC     | Neutrophil      | Graft   | ProTmune                       | ProTmune            | Overall    | Acute GvHD | Organs     | Duration (d) | Steroid    | Leukemia | Overall  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|---------|---------|--------|---------|-----------------|---------|--------------------------------|---------------------|------------|------------|------------|--------------|------------|----------|----------|
| Dose (10 <sup>6</sup> /kg)                                                                          | 6.6 (3.0 - 10.9)                                     | Subject | Disease | Sex    | Regimen | Engraftment (d) | Failure | <b>Related AEs</b>             | <b>Related SAEs</b> | Survival   | (CIBMTR) # | Involved   | Max Grade    | Responsive | Free     | Survival |
| - Recovery                                                                                          | 88% (74-100)                                         | 1       | MDS     | 66 / F | FluBu   | 14              | No      | Vomiting (G1)                  | None                | Yes        | None       |            |              |            | Yes      | Yes      |
| ose (10 <sup>8</sup> /kg)                                                                           | 2.3 (1.2 - 3.1)                                      |         |         |        |         |                 |         |                                |                     |            |            |            |              |            |          |          |
| Recovery                                                                                            | 86% (68-100)                                         | 2       | AML     | 56 / F | BuCy    | 18              | No      | None                           | None                | Yes        | None       |            |              |            | Yes      | Yes      |
| bility<br>CXCR4 MFI                                                                                 | 88% (77 - 98)<br>%CXCR4+ cells                       | 3       | AML     | 66 / F | FluMel  | 22              | No      | None                           | None                | Yes        | Grade 2    | Skin       | 7            | Yes        | Yes      | Yes      |
| ****p<0.0001                                                                                        | 100<br>100<br>80<br>****p<0.0001<br>T                | 4       | ALL     | 34 / F | CyTBI   | 15              | No      | None                           | None                | Yes        | None       |            |              |            | Yes      | Yes      |
|                                                                                                     | -00<br>-00<br>-00<br>-00                             | 5       | ALL     | 48 / M | CyTBI   | 16              | No      | Nausea (G2)<br>Vomiting (G1)   | None                | Yes        | Grade 2    | Skin       | 8            | Yes        | Yes      | Yes      |
| Pre ProTmune                                                                                        | V 20-<br>V 0<br>Pre ProTmune                         | 6       | ALL     | 56 / M | FluMel  | 18              | No      | None                           | None                | Yes        | Grade 3    | Skin / Gut | 5            | Yes        | Yes      | Yes      |
| ful on-site manufacture                                                                             | e of ProTmune confirmed by the potency marker CXCR4. | 7       | AML     | 69 / F | FluMel  | 19              | No      | Nausea (G2)<br>Chest Pain (G2) | None                | Yes        | None       |            |              |            | Yes      | Yes      |
| * Data reflective of November 29, 2017. Database is not locked and final data are subject to change |                                                      |         |         |        |         |                 |         |                                | # maximum           | grade GvHD |            |            |              |            |          |          |

# **ON-GOING STUDY ASSESSMENT**

As of a November 29, 2017:

# **MECHANISM OF ACTION**

#### Balanced donor T-cell Responses

/GvHD

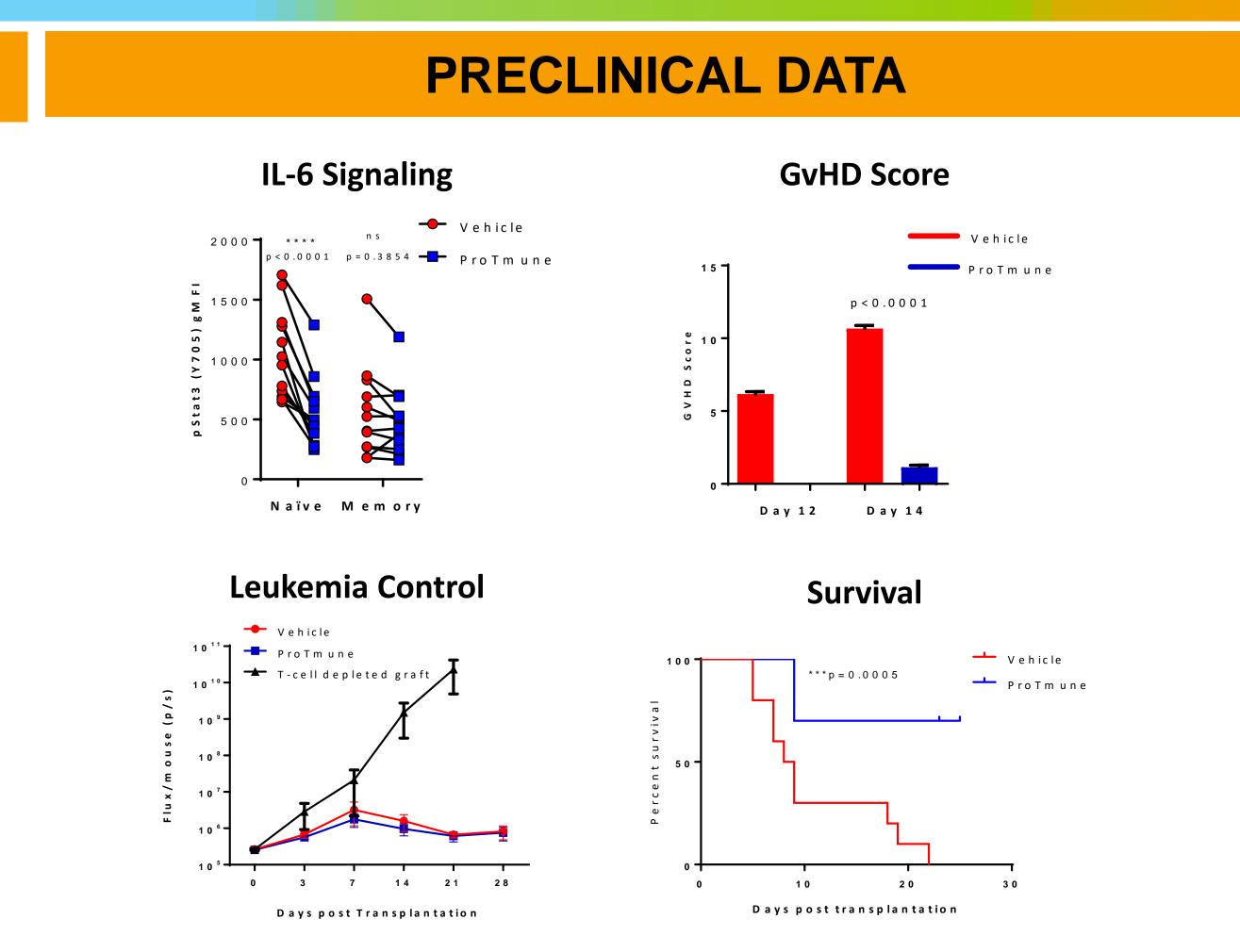
ProTmune:

✓ Prevents Acute GvHD

3) Maintains protective T- cell responses

1) Maintains donor T cell viability

2) Minimal impact on memory T cells


/ GvL

#### Maintains GvL

## **PROTECT PHASE 1 CLINICAL DATA\***

#### Day 28 Assessment

- of-care HCT
- subjects engrafted with no events of graft failure
- overall survival



**Figure 3**. ProTmune demonstrates reduced pro-inflammatory cytokine signaling in human naïve T cells, reduced GvHD, maintained GvL and enhanced survival in murine HCT models.

| essment |
|---------|
|         |

# CONCLUSIONS

ProTmune can be reproducibly manufactured on-site and seamlessly delivered as part of standard-

PROTECT Phase 1 Day 28 safety assessment demonstrated that ProTmune was well tolerated. All

• PROTECT Phase 1 Day 100 efficacy assessment demonstrated three events of acute GvHD, all responsive to steroids. All seven subjects were alive and leukemia-free at Day 100 post-HCT

• A randomized, double-blind, Phase 2 study is open for enrollment. Key endpoints include the cumulative incidence of Day 100 Grade 2-4 acute GvHD, leukemia relapse and leukemia-free and