Fate Therapeutics Announces FDA Clearance of IND Application for First-ever iPSC-derived CAR T-Cell Therapy
FT819 CAR T-cell Product Candidate Derived from Clonal Master iPSC Line with Novel CD19-specific 1XX CAR Integrated into TRAC Locus
Phase 1 Clinical Study will Evaluate FT819 for Patients with Advanced B-cell Leukemias and Lymphomas
“The clearance of our IND application for FT819 is a ground-breaking milestone in the field of cell-based cancer immunotherapy. Our unique ability to produce CAR T cells from a clonal master engineered iPSC line creates a pathway for more patients to gain timely access to therapies with curative potential,” said
FT819 was designed to specifically address several limitations associated with the current generation of patient- and donor-derived CAR T-cell therapies. Under a collaboration with
- Use of a clonal master iPSC line as the starting cell source, which enables CAR T cells to be mass produced and delivered off-the-shelf for broad patient access;
- Incorporation of a novel 1XX CAR signaling domain, which has been shown to extend T-cell effector function without eliciting exhaustion in published work described in the journal Nature Medicine (https://doi.org/10.1038/s41591-018-0290-5);
- Insertion of the CAR transgene directly into the T-cell receptor alpha constant (TRAC) locus, which has been shown to promote uniform CAR expression and enhanced T-cell potency in published work described in the journal Nature (https://doi.org/10.1038/nature21405); and
- Complete bi-allelic disruption of T-cell receptor (TCR) expression for the prevention of graft-versus-host disease (GvHD), a potentially life-threatening complication associated with allogeneic T-cell therapy.
The multi-center Phase 1 clinical trial of FT819 is designed to determine the maximum tolerated dose of FT819 and assess its safety and clinical activity in up to 297 adult patients across three types of B-cell malignancies (CLL, ALL, and NHL). Each indication will enroll independently and evaluate three dose-escalating treatment regimens: Regimen A as a single dose of FT819; Regimen B as a single dose of FT819 with IL-2 cytokine support; and Regimen C as three fractionated doses of FT819. For each indication and regimen, dose-expansion cohorts of up to 15 patients may be enrolled to further evaluate the clinical activity of FT819.
At the
1
About Fate Therapeutics’ iPSC Product Platform
The Company’s proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with cycles of other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Company’s first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Company’s platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics’ iPSC product platform is supported by an intellectual property portfolio of over 300 issued patents and 150 pending patent applications.
About
Forward-Looking Statements
This release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the advancement of and plans related to the Company's product candidates and clinical studies, the Company’s progress, plans and timelines for the clinical investigation of its product candidates, the therapeutic potential of the Company’s product candidates including FT819, and the Company’s clinical development strategy for FT819. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk of difficulties or delay in the initiation of any planned clinical studies, or in the enrollment or evaluation of subjects in any ongoing or future clinical studies, the risk that the Company may cease or delay preclinical or clinical development of any of its product candidates for a variety of reasons (including requirements that may be imposed by regulatory authorities on the initiation or conduct of clinical trials or to support regulatory approval, difficulties in manufacturing or supplying the Company’s product candidates for clinical testing, and any adverse events or other negative results that may be observed during preclinical or clinical development), the risk that results observed in preclinical studies of FT819 may not be replicated in ongoing or future clinical trials or studies, and the risk that FT819 may not produce therapeutic benefits or may cause other unanticipated adverse effects. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Company’s actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Company’s periodic filings with the
Contact:
Stern Investor Relations, Inc.
212.362.1200
christina@sternir.com
Source: Fate Therapeutics, Inc.